NIRS-Based BCIs: Reliability and Challenges
نویسندگان
چکیده
Abstract. Previously we contributed to the development of a braincomputer interface (Brainput) using functional near infrared spectroscopy (NIRS). This NIRS-based BCI was designed to improve performance on a human-robot team task by dynamically adapting a robot’s autonomy based on the person’s multitasking state. Two multitasking states (corresponding to low and high workload) were monitored in real-time using an SVM-based model of the person’s hemodynamic activity in the prefrontal cortex. In the initial evaluation of Brainputs efficacy, the NIRSbased adaptivity was found to significantly improve performance on the human-robot team task (from a baseline success rate of 45% to a rate of 82%). However, failure to find any performance improvements in an extension of the original evaluation prompted a reinvestigation of the system via: (1) a reanalysis of Brainput’s signal processing on a larger NIRS dataset and (2) a placebo-controlled replication using random (instead of NIRS-based) state classifications [1].
منابع مشابه
What we can and cannot (yet) do with functional near infrared spectroscopy
Functional near infrared spectroscopy (NIRS) is a relatively new technique complimentary to EEG for the development of brain-computer interfaces (BCIs). NIRS-based systems for detecting various cognitive and affective states such as mental and emotional stress have already been demonstrated in a range of adaptive human-computer interaction (HCI) applications. However, before NIRS-BCIs can be us...
متن کاملHemodynamic brain-computer interfaces for communication and rehabilitation
Functional near-infrared spectroscopy (NIRS) and functional magnetic resonance imaging (fMRI) are non-invasive methods for acquiring hemodynamic signals from the brain with the primary benefit of anatomical specificity of signals. Recently, there has been a surge of studies with NIRS and fMRI for the implementation of a brain-computer interface (BCI), for the acquisition, decoding and regulatio...
متن کاملGraph-Based Transfer Learning for Managing Brain Signals Variability in NIRS-Based BCIs
One of the major limitations to the use of brain-computer interfaces (BCIs) based on near-infrared spectroscopy (NIRS) in realistic interaction settings is the long calibration time needed before every use in order to train a subject-specific classifier. One way to reduce this calibration time is to use data collected from other users or from previous recording sessions of the same user as a tr...
متن کاملEvaluation of various mental task combinations for near-infrared spectroscopy-based brain-computer interfaces.
A number of recent studies have demonstrated that near-infrared spectroscopy (NIRS) is a promisingneuroimaging modality for brain-computer interfaces (BCIs). So far, most NIRS-based BCI studies have focusedon enhancing the accuracy of the classification of different mental tasks. In the present study, we evaluated theperformances of a variety of mental task combinations in order to determine th...
متن کاملNear-infrared spectroscopy (NIRS)-based eyes-closed brain-computer interface (BCI) using prefrontal cortex activation due to mental arithmetic
We propose a near-infrared spectroscopy (NIRS)-based brain-computer interface (BCI) that can be operated in eyes-closed (EC) state. To evaluate the feasibility of NIRS-based EC BCIs, we compared the performance of an eye-open (EO) BCI paradigm and an EC BCI paradigm with respect to hemodynamic response and classification accuracy. To this end, subjects performed either mental arithmetic or imag...
متن کامل